
The DEREMER Parser Generator PE-T-535 (Rev. 6)

DATE:

TO:

FROM:

SUBJECT:

REFERENCE:

KEYWORDS:

10 December 1987

R D & E Personnel

David Spector

The DEREMER Parser Generator

None

LANGUAGES

ABSTRACT

This document describes the DEREMER Parser Generator. DEREMER is used
to create parsers (recognizers) for programming or control languages,
given a context-free grammar in the form of BNF productions. It uses
Frank DeRemer's original Not-Quite LALR(l) algorithm.

|DEREMER -is compatible with and produces output for the PLP, PLIG, PL1,
|SPL, and various C compilers.

DEREMER is compatible with all supported PRIMOS revisions.

DEREMER was written by Robert Schwartz with modifications by Louis
Tsien, and more recently by David Spector and Garth Conboy.

This PE-T replaces PE-T-418.

This PE-T describes Rev. 21.0 (30 NOV 87) of DEREMER.

PRIME RESTRICTED

rOi : i .

'I* t*-w-' JW '.'**-

- •* 0" • •* ••» V •

xq .':iSfe£-:;1'..

X. •
* *'v

;: (jj

i'i JL'

•-fT

s^: s-I
.1 . . c
£,<»
£ . 2

strs'-I

3

f.

•:?^ .*<;

•?. w

i * S v ' . • w •).»•• t:

. • •. o u.5 i -x \

-•.-•/ :• j d ^ \ , l v . ? .

.'. . s 7^H3Q r &£$ 8

>... (.^AetiJQ'gs'-'dsGf: <:3.

< ; :.• •-l.vl.9/i[.'?'c3:- (H
•.-•:-$3' X.OX,-

•0 £•OX
f'i.-j EvOX

fe.'0-.T

•_
1.

•" tJ'

:-v'-L

J. . --. ±
'-S. IX

c . X X

*.ir
ii';?^SQ S i

EX

Table of Contents

1 Introduction 2

2 Input Format 3
2.1 Example: CALC1.SPL.DEREMER. 4
2.2 DEREMER Directives 8

3 Invoking DEREMER ... 11

4 Notes for C Language Support 13

5 Parser Error Handling 15
5.1 Default Error Handling15
5.2 The

5. 3 The SYNTAX_ERROR Symbol 16

6 Parse Stack Overflow 18

7 Practical Hints 19
7.1 Variable Names 19
7.2 Semantic Values 19
7.3 The Parser 23
7.4 The Lexer 23
7.5 Use of Precedence and Associativity 23

8 The DEREMER Algorithm 24

9 Debugging a Parser: How It Works 24

10 Sample Output Files 29
10.1 CALC1.FSA 30
10 .2 CALC1. INS. PL1 32
10.3 CALC1.GRAMMAR ...3/
10.4 CALC1.SPL ...• 33

11 Advanced Features 3S
11.1 Ambiguity Resolution using Precedence and Associativity 3S
11.2 Multiple Parsers 43
11.3 Calling the Recovery Procedure 45
11.4 Parser Table Format 45

12 DEREMER Error Messages 46

13 References 47

•) .- .-' Y :I205.

serosal x

•- ..'."- •*• ••rrrt *

•'5 ist.

• /

The DEREMER Parser Generator PE-T-535 (Rev. 6)

1 Introduction

What is DEREMER?

Stated as simply as possible, DEREMER is a program which takes as its
input a file containing

(1) A grammar for an assembler, compiler, or interpreter, or other
kind of language.

(2) Other information which specifies semantic processing required
by the application.

and produces as output a source code file containing a procedure to
parse and/or interpret input strings or files according to the supplied
grammar, performing the specified semantic actions. This procedure,
which we call the parser, can be compiled as part of a larger system.
| The parser may be produced in a format appropriate for PLP, PL1G, PL1,
|SPL, C, or CC.

You, the reader, are assumed to have a nodding acquaintance with
context free grammars and the Backus-Naur notation (BNF) in which such
grammars are expressed. To refresh your memory, a context free
language is specified by a context free grammar consisting of

(1) a set of terminal symbols, or tokens, which are the basic
elements forming an input string,

(2) a set of nonterminal symbols, which represent the syntactic
classes defined by the grammar, and

(3) a set of rules, or productions, which define each nonterminal
in terms of instances of terminal and nonterminal symbols. Each
rule contains a left hand side, the nonterminal being defined, the
BNF metasymbol '::=', and a right hand side, consisting of a
string of terminals and nonterminals from which the left hand can
be formed.

One specific nonterminal, the start symbol, represents the class of
strings which is defined by the entire grammar.

The usage of DEREMER is best explained "backwards", beginning with a
brief overview of how the parser operates. The parser reads input by
calling a programmer-supplied lexical procedure, or lexer. The lexer's
task is to read the actual input stream and produce tokens which are
returned to the parser. Tokens consist of a syntactic type, coded as
an integer, and a semantic value, which is a pointer carried along by
the parser but used only by the user application in whatever way it
desires. These tokens are shifted, or pushed onto an internal stack,
until the entire right hand side of some grammar rule appears on the
stack. At this time a reduction is performed, whereby the symbols
forming the right hanH side of the production are removed from tfte
stack and replaced by the nonterminal on the left hand side of the
production. This operation is also known as recognizing- the

PRIME RESTRICTED Page 2

The DEREMER Parser Generator PE-T-535 (Rev. 6)

production. When a reduction is performed, user application code ris
executed to calculate the semantic value (generally a function-onf the
semantic values of the symbols on the right hand side of .f yt̂ e
production) associated with the resulting nonterminal. : ̂ ^i.;.

This process continues until the parser reaches a final state where the
start symbol is the only symbol on the parser stack and no further
shift is possible. The parser then accepts the input string, afid
returns the value associated with the start symbol.

If a point is reached where the current lookahead symbol is illegal,
then the parser has detected a syntax error. Error recovery is
described in detail under Parser Error Handling below.

2 Input Format

This section describes the format of DEREMER input files.

In order to distinguish between concepts and literal character strings,
the notation used throughout this document follows these general rules:

(1) An UPPER CASE identifier is a literal, i.e. stands for
itself. This does not necessarily mean that the identifier must
actually be written in upper case.

(2) A non-alphabetic character usually stands for itself. In the
text, it usually is enclosed in single quotes (').

(3) A symbol given in lower case letters often stands for a class
of objects. Usually the symbol itself is suggestive of this.

With these preliminaries taken care of, a short example of a DEREMER
input file is given on the next page.

Note that the . SPL language is used in all examples. Note that
nonterminals are enclosed in angle brackets ('<>').

PRIME RESTRICTED Page

The DEREMER Parser Generator PE-T-535 (Rev. 6)

?.l Example; CALC1.SPL.DEREMER

/* An interpreter to do arithmetic calculations on single digits */
%PARSER Calcl (input_string);

%DECLARATIONS
declare input_string char (*) varying;

/* Parameter to the parser procedure */
declare input_position fixed bin;
declare basedinteger fixed bin (31) based;
declare rank builtin;

/* A function to return the ASCII code for the character */>...
%Include •Calcl.ins.pll•;
%END_DECLARATIONS;

%TOKEN plus_ , star_ , left_paren_ , right_paren_ , digit_, end_;

%RULES;
<input_line> : := <expression> end_
•
i
<expression> ::- <expression> plus_ <term>

%ACTION
$$ -> based_integer = $1 -> based_integer +

$3 -> based_integer;
free $3 -> based_integer;
%END_ACTION

| <term> /* Default action is '$$ = $1;• */
t
<term> ::= <term> star_ <primary>

%ACTION
$$ -> based_integer = $1 -> based_integer *

$3 -> based_integer;
free $3 -> based_integer;
%END_ACTION

| <primary>

<primary> ::= digit_
| left_paren_ <expression> right_paren_

%ACTION
$$ = $2*
%END_ACTION

%INIT
input_position = 1 ;
%END_INIT;

%PROGRAMS
lexer:

procedure (type, value_ptr);
del type fixed bin (15);
del value_ptr pointer;
del current_char char (1);

PRIME RESTRICTED Page

The DEREMER Parser Generator PE-T-535 (Rev. 6)

/* Value returned will be undefined by default */
value_ptr = null ();

/* Return *end__' token at end of string */
if input_position > length (input_string)
then
do;

type = end__;
return;

end;

/* Get next character */
current_char = substr (input_string, input_position, 1);
input_position = input_position + 1;

/* Return proper token for current character */
select (current_char);

when ('+•) type = plus_;
when ('* *) type = star_;
when (• (') type = lef t__paren_;
when (') ') type = right_paren_;
when CO','!','2','3','4','5','6','7','8','9')
do;

type = digit_;
allocate based_integer set (value_ptr);
value_jptr -> based_integer = rank (current_char)

- rank ('0');
end;
otherwise type = 0 ; /* To detect illegal characters */

end; /* end of select statement */
end lexer; /* end of PROGRAMS section */

%END_PROGRAMS;

%END_PARSER;

This example is the DEREMER input file defining a calculator-like
interpreter for expressions involving single numeric digits, '+' and
'*' operators, and parentheses.

A DEREMER input file consists of sections of text delimited by
keywords. Each keyword begins with a ' %'. (Although DEREMER does not
require keywords to be spelled in all capital letters, the example has
them capitalized in order to make them more visible.) Keywords do not
have to start in column one: the input is completely free-format.
PL/1 style comments, delimited by /* and */, may be interspersed freely
within the text. The semicolons following keywords are significant,
although somewhat arbitrary.

The non-comment text of the file is bracketed by the keywords %PARSER
and %END_PARSER;.

PRIME RESTRICTED Page

The DEREMER Parser Generator PE-T-535 (Rev. 6)

The parser is produced as a function that returns a pointer. The
desired external procedure name for the parser follows the keyword
%PARSER. If the parser is to take arguments, the argument list follows
the parser name; otherwise the argument list is omitted. In either
case, a semicolon is required. For instance, the input line

%PARSER Calcl (input_string);

results in the statement

Calcl: procedure (input_string) returns (ptr);

whereas

%PARSER Calcl;

produces

Calc1: procedure returns (ptr);

The returned pointer is not used by DEREMER, but is useful for
implementing the semantics (meaning) of the application. In
particular, a calculator (such as our example above) might use it to
return a pointer to a numeric value, while a compiler might use to
return a pointer to a parse tree.

Note that the you must supply a procedure called ' lexer' having two
arguments. The first argument is the returned token type value, a
fixed bin (15). This represents the token for parsing purposes. The
second argument is the returned extended token value, a pointer. This
represents any value associated with the token to be used in semantic
actions. The lexer is described later in this document.

Between the %PARSER and %END_PARSER keywords, there appear a number of
sections, each headed by a unique keyword—here we see the keywords
%DECLARATIONS, %TOKEN, %RULES, %INIT, and %PROGRAMS. These sections
can occur in any order. Any unneeded sections may be omitted.

The %DECLARATIONS, %INIT, and %PROGRAMS sections are very similar in
function. Each has a matching end keyword (%END_DECLARATIONS;,
%END_INIT;, and %END_PROGRAMS;) which includes a semicolon. Each pair
of keywords encloses a section of literal text which is copied directly
to the parser. The %DECLARATIONS and %INIT texts are copied to the
beginning of the parser, and are most suitable for declarations of
variables to be used in semantic processing, %Replace and %Include
constructs, initialization statements, and so forth. The %PROGRAMS
text is copied toward the end of the parser, and is intended mainly for
internal procedures used by your application (semantic) code.

The %TOKEN section consists of one or more statements headed by the
keyword %TOKEN. Other keywords (%LEFT, %RIGHT, and %NONASSOC) can be
used to specify precedence and associativity for given tokens—this
will be explained later under Advanced Features. The keyword .%TOKEN is
followed by a list of one or more token names, separated by commas and

PRIME RESTRICTED Page 6

The DEREMER Parser Generator PE-T-535 (Rev. 6)

terminated by a semicolon. An error message results from using an
undeclared token name in a grammar rule. You may assign your own token
type values, as in the following example:

%TOKEN plus_=6f minus_, identifier_=42, constant__=107;

If you don't assign a value, DEREMER assigns the previous value plus
one. Thus, 'minus_' is given the value 7. The default starting value
is one, and numeric values less than one are illegal, as are repeated
values.

| A legal token name is any symbol which would also be a legal PLP, PL1G,
|PL1, SPL, C, or CC variable name: a string of 32 or fewer characters,
beginning with an alphabetic, where the succeeding characters, if any,
| come-from the set {A-Z, a-z, 0-9, _, $}, except that "$" is not a legal
{identifier character in standard C compilers.

The %RULES; section contains the rules for the grammar and their
associated semantic actions. Each rule consists of a left hand side,
which is a nonterminal symbol, followed by the BNF metasymbol ':: = •,
followed by 1 or more alternative right hand sides separated by either
vertical bar • j ' or exclamation ' 1 ' . The last alternative is
terminated by a semicolon. Each alternative right hand side for a
given rule consists of a (possibly empty) sequence of terminal and
nonterminal symbols. A nonterminal symbol is one which is enclosed in
angle brackets •<>• or square brackets •[]'. Additional brackets may
appear nested within the outermost brackets, as long as each left
bracket has a matching right bracket. The square brackets are useful
for suggesting an optional item, although DEREMER treats square
brackets and angle brackets alike in generating a parser. Note that
upper and lower case are distinguished for symbols, unlike keywords.

There may be more than one production having the same left hand side.
This is equivalent to using alternative right hand sides.

Each right hand side of a grammar rule may have an action associated
with it. The action is a piece of text delimited by the keywords
%ACTION and %END_ACTION which follows the terminal and nonterminal
symbols of the right hand side, within the action, the string ' $$' is
used to denote the value to be associated with the left hand side of
the grammar rule when this reduction takes place. A string of the form
'$n', where n is a digit between 1 and 9 inclusive, denotes the value
associated with the nth component of the right hand side. Each of
these values is of datatype pointer. In the 'Calcl' grammar above, the
values point to allocated fixed bin (31) variables used to store
integers. Note that the $$ and $n constructs are not available in any
of the literal (code) sections other than %ACTI0N sections, because
they would be inefficient to support and/or conceptually difficult to
understand outside of the semantic action source code associated with
an individual production.

When a given right hand side of a grammar rule has no explicit action,
the left hand side inherits the value of its first right hand side
component. This is equivalent to the action

PRIME RESTRICTED Page 7

The DEREMER Parser Generator PE-T-535 (Rev. 6)

%ACTION
$$ = $1*
%END_ACTION

This is particularly convenient when the right hand side contains
exactly one symbol.

The assignment '$$ = $1;' takes place before any action is executed.

DEREMER takes the nonterminal which is the left hand side of the first
rule to be the start symbol for the grammar.

2.2 DEREMER Directives

Here is a complete list of DEREMER directives. Square brackets
indicate optional syntax.

/* .. . */ : A comment. Comments may be used freely throughout
DEREMER input files and are ignored by DEREMER, except that
comments in literal code sections are copied intact to the
generated parser.

%PARSER parser_name [(argument_list)]; ... %END_PARSER; :
Defines a DEREMER input file. This directive must be present
and must bracket any and all other directives (it may be
preceded and followed by comments). See explanation just after
the Calcl example above.

%COMMENTS ... %END_COMMENTS; : Defines a section containing
comments to be placed at the beginning of the generated parser.
Note that all text between the 'S' in %COMMENTS and the '%' in
%END_COMMENTS;, including Newlines, is copied to the generated
parser. This section allows the Prime Standard File Header to
be specified for the generated parser.

%DECLARATIONS ... %END_DECLARATIONS; : Defines the Declarations
section. Contains declarations needed by your application.

%INIT ... %END_INIT; : Defines the Initialization section.
Contains application code to be executed when the parser is
called, prior to parsing.

%PROGRAMS ... %END_PROGRAMS; : Defines a code section
containing procedures called by application code anywhere in
the parser.

%ACCEPT ... %END_ACCEPT; : Defines a section executed when the
parser accepts its input (recognizes the start symbol).

%CHECK_STACK; : Generates extra parser code to check for stack
overflow. See the section Parse Stack Overflow below.

PRIME RESTRICTED Page

The DEREMER Parser Generator PE-T-535 (Rev. 6)

%ERROR ... %END_ERROR; : Defines a section executed when the
parser encounters an error (a token is found that is not
correct according to the grammar rules). This section executes
before any SYNTAX_ERROR semantic action. See Parser Error
Handling for more details.

%SHIFT ... %END_SHIFT; : Defines a section executed when the
parser shifts each input token onto the parse stack.

%REDUCE ... %END_REDUCE; : Defines a section executed when the
parser makes each reduction (recognizes each grammar rule).

%TOKEN token_name [= number], ... ; : Declares a list of tokens
(terminal symbols) not having a precedence or associativity.

%LEFT ... ; : Declares a list of token (terminal symbol) names
with the left-associative attribute and a higher precedence
than all previous declarations (see Advanced Features below).

%RIGHT ... ; : Declares a list of token (terminal symbol) names
with the right-associative attribute and a higher precedence
than all previous declarations (see Advanced Features below).

%NONASSOC ... ; : Declares a list of token (terminal symbol)
names having no associativity but a higher precedence than all
previous declarations (see Advanced Features below).

%RULES; ... : Defines the section containing the grammar rules,
expressed as BNF productions.

%ACTION ... %END_ACTION : Defines a semantic action associated
with the preceding grammar rule. The action will be executed
when the rule is recognized.

%PREC token_name : Overrides the default precedence of a grammar
rule (that of its rightmost terminal symbol) with the
precedence of the specified token (see Advanced Features
below).

%TABLE table_name; : Creates a file 'name.TABLES' containing the
parser tables in .BIN format. The name "table_name" is used as
an external static structure name in connection with these
tables. The standard "%TABLE table name;" form of the %TABLE
directive is not supported in the C Tanguage modes.

The STABLE" directive no longer truncates the name of the
external symbol to 8 characters when emitting the parse tables
to a binary file.

The variant "%TABLE external;" causes the parse tables to be
emitted normally (in the generated parser), but their storage
class will be "static external" rather than "static internal".
For this option to work correctly the generated parser must"be
loaded with "BIND" to allow resolution of long external- symbol

PRIME RESTRICTED Page 9

The DEREMER Parser Generator PE-T-535 (Rev. 6)

names.

The variant "%TABLE constant;" causes SPL language parse
tables to be declared using "options(constant)". This causes
the parse tables to be allocated in the procedure frame rather
than in the linkage frame, thus allowing easy sharing of these
large data areas.

%NO_DEFAULT_ACTION; : Disables the default actions "$$ = $1"
(when there exists at least one right-hand-side symbol) or "$$
= null()" ("$$ = 0" for C). This slightly increases the
efficiency of generated parsers at the expense of not allowing
simple %ACTI0N clauses to be omitted. If this option is used
then an action must be specified for each reduction.

%ARGUMENT_DCLS ... %END_ARGUMENT_DCLS; : Specifies argument
declarations for the generated parser. Applies only to the C
language; see the "Notes for C Language Support" section.

%STACK stack_length [EXTERNAL]; : Specifies a length for the
parser stacks (the default is 200). If the 'EXTERNAL' option
is specified, the stacks are declared with storage class
'external static'. The declaration corresponding to the
directive *%STACK 300 external;' would be:

del 1 dp$__stacks external static,
2 dp$_state_stack(300) bin,
2 dp$_state_stackptr bin,
2 dp$_symbol_stack(300) ptr,
2 dp$_symbol_stack__ptr bin;

$Insert pathname : Includes the named file at this point in the
DEREMER input file. If an entryname is given, the file is
found by using the INCLUDE$ PRIMOS search rules. See PE-T-1204
for a preliminary description of search rules. $Insert must
begin in column 1 and only the characters '$1' are significant
(the •'I* must be upper case). $Inserted files must not be
nested. $Insert occurring in any of the literal (code)
sections is not expanded, but is copied verbatim to the parser.
This supports programming languages in which $Insert is
recognized and is to be expanded at compile time.

%SYSTEM option; : Used in specifying multiple parsers.
Described under Advanced Features below.

Unneeded directives or sections may be omitted.

PRIME RESTRICTED Page 10

The DEREMER Parser Generator PE-T-535 (Rev. 6)

3 Invoking DEREMER

DEREMER is invoked by a command line of the form

DEREMER inputjpathname {command_options}

where the input file has a name of the form • name.lang.DEREMER' , of
which only 'name.lang' need be specified as the "input_pathname" above.
The 'lang' indicates the desired language and file name suffix for the
generated parser.

The command options can be chosen from the following list (where "name"
is the entryname portion of " input_pathname" with any ' lang. DEREMER' or
|'DEREMER* suffix removed, and "lang" is the desired language—PLP,
|PL1G, PL1, SPL, C, or CC):

-grammar, -grm: Create a file 'name.GRAMMAR' containing a
formatted listing of the input grammar (rules section) without
the actions.

-fsa: Create a file 'name.FSA' containing a listing of the parser
(Finite-State Automaton) states. The format of FSA files is
described under Debugging a Parser; How It Works below.

-debug: Create the parser output file with the name
'name.DEBUG.lang' instead of 'name.lang' and provide a run-time
trace of parsing via calls to system subroutine IOA$ (see
PE-T-364 for a description of IOA$).

-externals, -ext: Remove the 'dp$_token_name' function (returns
the character string representation of a token, given its token
value) from the parser ('name.lang' file) and place it in a
file called 'name.EXTERNALS' instead.

| -pll/ -pUg* -spl, -pip/ -c, -cc: Specify the compiler that will
j be used to compile the parser. This affects the use of certain

language features, such as 'select' vs. 'goto', as well as

determining the file suffix ("lang") used.

The default language is PLP.

j -C produces a C language parser with a .C suffix.
| -CC produces a C language parser with a .CC suffix (content is
| otherwise the same as for -C).

Note that these options are not necessary, because the input
file name can be of the form ' name. lang.DEREMER • to specify the
desired output language automatically.

-no_j>arser, -npar: Suppress creation of the parser ('name.lang'
file).

PRIME RESTRICTED Page 11

The DEREMER Parser Generator PE-T-535 (Rev. 6)

-nonactions, -nact: Delete semantic action code from the parser
('name,lang' file).

-no_srj3onflicts, -nsrc: Suppress warning messages for all
shift-reduce conflicts.

-noerrtty: will cause most error messages (other than those for
fatal errors) to be written in a file named 'name.ERROR' in the
current directory, instead of being displayed on the terminal.
This option is unsafe to use; it is meant only for in-house
use when building COBOL (which has an erroneous grammar), using
a previously-stored "norm" file to detect unexpected errors, by
doing an explicit file comparison operation after invoking
DEREMER.

Further discussion of many of the features mentioned above is made
throughout this document.

DEREMER produces the following two main output files, where "name"
again is the entryname portion of " input__pathname" with any
'.lang.DEREMER' or '.DEREMER' suffix removed, and "lang" is the desired
|language—PLP, PLIG, PLl, SPL, C, or CC (C and CC differ only in the
|suffix; CC is provided for historical reasons).

name.lang: The parser, including the contents of %PROGRAMS and
other literal text sections.

name.INS.PLl: An %Include file containing %Replace statements to
define token names, for use by the lexer and other application
code.

The file 'name.lang' is the output source file described in the
Introduction. The file 'name.INS.PLl' contains definitions of the
integer codes assigned by DEREMER (or the user) for the various tokens.
In our calculator example, the token 'plus_' is given type code 1
(because it is the first token declared in CALC1.SPL.DEREMER). The
token definition file CALC1.INS.PL1 contains a line

%replace plus_ by 1;

This format allows the programmer to %Include the name.INS.PLl file
within the lexer, or within the %DECLARATIONS section, causing all
token type codes to be defined consistently between the lexer and
parser.

The following additional output files may be created, when specified by
command options or DEREMER directives:

name.GRAMMAR: A formatted listing of the input grammar (rules
section) without the actions.

name.FSA: A listing of the parser (Finite-State Automaton)
states. See Debugging a Parser: How It Works below for a
description of the format used.

PRIME RESTRICTED Page 12

The DEREMER Parser Generator PE-T-535 (Rev. 6)

name. EXTERNALS: The ' dp$_token_name • function (returns the
character string representation of a token, given its token
value).

name.TABLES: The parser tables (in .BIN format), when the %TABLE
directive appears in the input file. See the description of
the %TABLE directive under DEREMER Directives above.

All output files are created in the current (attached) directory.

It cannot be emphasized too strongly that only the latest revision of
DEREMER is to be used (it is always extended compatibly). Do not copy
CMDNCO>DEREMER.SAVE (or DEREMER.RUN if a changeover is made to EPFs)
for local use unless you are sure to recopy it when new versions are
installed.

Prime Engineering users must accept responsibility for checking that
the latest version of DEREMER is reinstalled after a system upgrade.
This is necessary because a system upgrade replaces DEREMER by the
latest Master Disk version, which is not always the latest version
available in-house.

4 Notes for C Language Support

The generation of parsers in the C language (and the following
documentation) has been provided by Garth Conboy of Pacer Software,
Inc. At the present time, this feature is available on an "as-is"
basis. Potential users must evaluate the suitability of the generated
C parsers for their applications.

|Both DEREMER language modes C and CC produce parsers in the C language.
|The difference is that -C (or an input file suffix .C.DEREMER)
|specifies that the suffix of the generated files is to be .C, while -CC
I(or an input file suffix .CC.DEREMER) specifies that the suffix of the
|generated files is to be .CC.

|Because standard C compilers do not recognize "$" as a legal character
|in identifiers, the DEREMER internal identifier prefix "dp$_" is
|changed for C (and CC) language to "dp ".

The lexer that will be called by the C parser has an additional level
of indirection for both of its two arguments to account for C's
pass-by-value nature. The DEREMER generated call would be:

short dp tkntyp;
int *dp tknptr;

lexer(&dp tkntyp, &dp tknptr);

All returned lexical values must be word-aligned pointers because
dp tknptr is declared "int *" rather than "char *" for efficiency.

PRIME RESTRICTED Page 13

The DEREMER Parser Generator PE-T-535 (Rev. 6)

Thus, part of a correct C lexer would be:

void lexer(lexcode_ptr, lexval_ptr)
short *lexcode_ptr;
int * *lexval_ptr;

{

}

*lexcode_ptr
*lexval_ptr
**lexval_ptr
return;

Integer_constant;
(int *)malloc(sizeof(int));
Integer_value;

The generated parser will be declared to return an "int *" (pointer to
integer); this will be the lexical value of the final reduction. On
error returns from the parser, the C null pointer will be returned (0).

The semantic stack (the values of $$, $1, etc.) in C generated parsers
is declared as an array of "int *"s. In the general case, however, the
actual values that are to be put on the semantic stack will be pointers
to complex structures rather than pointers to integers. Thus, casts
will often be needed to access the semantic stack. For example,
assuming the following declarations:

typedef struct expTag {short expressionType;
short expressionOperation;
long pointedToSize;
int isAnLvalue:1,

parenthes ized:1;
struct expTag *sonl;
struct expTag *son2;
struct expTag *son3;
} *Expression;

Expression Parenthesized();

The following excerpt of DEREMER source will correctly deal with a
semantic stack containing these nodes:

<Expression> ::= LParen <Expression> RParen
%action

(Expression)$$ = Parenthesized($2);
(Expression)$$ -> sonl = (Expression)$2;
(Expression)$$ -> parenthesized = True;
(Expression)$$ -> isAnLvalue = False;

%end_action ;

If a C parser takes no arguments then the "%PARSER" directive must be:

%PARSER parser_name();

|Note that there is no test for the presence of the empty parentheses,
jbut they must be there! -

PRIME RESTRICTED Page 14

The DEREMER Parser Generator PE-T-535 (Rev. 6)

If arguments are expected then they should be placed in the "%PARSERM
directive, as with other languages. However the argument declarations
must appear between "%ARGUMENT_DCLS" and "%END_ARGUMENT_DCLS; "
clauses. For example:

%PARSER parser_name(string, len);

%ARGUMENT_DCLS
char *string;
int len;

%END_ARGUMENT_DCLS;

The " %ARGUMENT_DCLS" directive may only be used when generating a C
parser.

5 Parser Error Handling

DEREMER provides three distinct error handling facilities:

1. Returning a null pointer (the default).

2. Executing an %ERROR section.

3. Processing a SYNTAX__ERROR symbol and executing its %ACTION, if
any. These facilities are described below.

5.1 Default Error Handling

In the absence of any grammar rules having SYNTAX_ERROR on the right
hand side, the parser returns a nullQ after having read as far as is
necessary to determine that a syntax error exists. No attempts are
made to recover from the error, or to continue the parse. The
procedure(s) which call the parser must be prepared for null() to be
returned, and must do the error reporting, if any. For interactive
systems, some means of determining the point of failure within the
input string may be sufficient.

5.2 The %ERROR Section

The directives %ERROR and %END_ERROR; define a section executed when
the parser encounters an error (a token occurs that is not correct
according to the grammar rules). This section executes before any
SYNTAX_ERROR semantic action (these are described below).

The following variables and functions are available within this section
to aid in handling errors:

Identifier Declaration Description
dp$_tkntyp fixed bin (15) Current token type "..
dp$_tynptr pointer Current token value
dp$_current_state fixed bin (15) Current state number

PRIME RESTRICTED Page 15

The DEREMER Parser Generator PE-T-535 (Rev. 6)

dp$_number_ofractions entry (bin) Converts state number to
returns (bin) number of possible shifts

dp$_nth__action entry (bin, bin) Converts state number and
returns (chart321varying) n to nth shift's token

|IMPORTANT NOTE: For the C (and CC) languages, the DEREMER internal
|identifier prefix °dp$_" in all these names is changed to "dp ", since
|"$M is not a legal identifier character in standard C compilers.

Here is a typical error handler using these variables and functions:

%ERROR
/* Display message upon a syntax error */

del er_action_index fixed bin (15);
del er_action fixed bin (15);
del erjmessage char (1024) varying;

erjmessage = •**** Found *
|| dp$_token_name (dp$_tkntyp)
j| ' instead of: ';

/* Find expected symbols */
do er__action__index = 1 to dp$_number_of_actions (dp$_current__state);

er_action = dp$_nth_action (dp$_current_state, er_action__index);
erjmessage = erjmessage

I I dp$_token_name (er_action)
II ' '?

end;
call display__message (er_message);

%END_ERR0R;

This error handler works well in conjunction with the SYNTAX__ERROR
mechanism described next.

5.3 The SYNTAX ERROR Symbol

DEREMER parsers feature a controlled error detection and recovery
method, using a special, reserved token name SYNTAX_ERROR.

Note that the identifier SYNTAX_ERROR must not be used in any sense
other than the one used here. SYNTAXJBRROR can appear in upper or
lower case.

Traditionally, parsers recover from syntax errors by scanning the input
stream for a synchronizinq token, and continuing from there. For
example, a semicolon makes a good synchronizing token for PL/l-like
languages because it indicates the end of a statement, which is a good
place to recover to. DEREMER provides the special token SYNTAX__ERROR
to allow you to declare your own synchronizing tokens so recovery can
be to points of your own choosing.

We use the 'Calcl' example above to show how SYNTAX ERROR is used.

PRIME RESTRICTED Page 16

The DEREMER Parser Generator PE-T-535 (Rev. 6)

We want to recover to an <expression> if there is a syntax error while
parsing an <expression>. Just add the rule

<expression> ::= SYNTAXJBRROR

This declares that all tokens (terminal symbols) that can legally
follow an <expression> (namely the tokens plus__, star_, right_paren__,
and end_) are now synchronizing tokens. When a syntax error is
detected, the the following things will happen:

1. The %ERROR ... %END_ERROR; section, if any, is executed.

2. Input tokens are examined and discarded until one of the
synchronizing tokens is found.

3. The rule containing the SYNTAX_ERROR token is recognized, and
any associated %ACTION ... %END_ACTION section is executed.
Typical actions might be to display a specific error message,
or to set a flag to inhibit further code generation.

4. The parse continues normally with the token following the
synchronizing token.

Since the input tokens are discarded until a synchronizing token is
found, you must insure that a synchronizing token can always be found,
otherwise an infinite loop can occur. Including the rule

<start_symbol> ::= SYNTAX_ERROR end_of_stream__token ;

(where "<start_symbol>" is your start symbol, and Mend_pf_stream_token"
is your end-of-file or end-of-line token) fulfills this requirement.
This rule ensures that there will always be at least one rule pending
on the stack which contains the token SYNTAX_ERROR. Thus, in the worst
case, recovery from a syntax error will read tokens till the end of the
input, and then stop.

SYNTAX_ERROR is used in grammar rules just like a nonterminal symbol
representing one or more tokens, other than those specified by other
rules. For example, the rule

<start> ::= a end__
| SYNTAX_ERROR end_

f

represents the language consisting of a single 'a' token, where any
other case (no token, some token other than 'a') results in recognizing
the second alternative.

SYNTA5MERR0R may be used just like any other nonterminal, so the above
example could be written

<start> ::= <indirect> end_
• —

PRIME RESTRICTED Page 17

The DEREMER Parser Generator PE-T-535 (Rev. 6)

<indirect> := a
I SYNTAX ERROR

and this would have the same meaning. The important thing to note is
that SYNTAX_ERROR eats up (or represents) all otherwise unspecified
tokens (terminal symbols) up to the first token which may follow it in
the grammar ('end_' in the example above). Multiple uses of
SYNTAX_ERROR must obey the same LALR(l) restrictions as any other
symbols and, in addition, must be chosen such that the set of tokens
indicated by the grammar rules as being legal following the
SYNTAX_ERROR symbol are exactly the ones you would like each
SYNTAX_ERROR to stop at. When in doubt, try experimenting with small
test grammars, running the resulting parsers on test cases or examining
the resulting FSA files.

6 Parse Stack Overflow

Stack overflow when running a DEREMER-generated parser is caused by too
many shifts prior to a reduce, and is typically the result of
specifying right-recursive lists in a grammar, as shown in the
following example:

<A_list> ::= <A> ;
<A_list> ::= <A> <A_list> ;

Such use of right recursion is appropriate for LL(1) grammars but not
for the LR(1) grammars DEREMER accepts. Under DEREMER, right recursion
causes one additional stack position to be used for each item on the
list, whereas left recursion uses only one stack position for the
entire list, no matter how long it is.

Right-recursive lists can always be changed to use left recursion, and
this will solve the overflow problem:

<A_list> ::= <A> ;
<A_list> ::= <A_list> <A> ;

The usual reason for using right recursion is that this allows the
semantic action code to construct a singly-linked list , of structures
associated with the symbols in the list in a natural way (the parsing
occurs in forward order for left recursion and in backward order, which
is most natural for forward-threading, for right recursion). Threading
singly-linked lists in forward order using left recursion only requires
maintaining a pointer to the previously-parsed structure in the list;
this additional slight increase in complexity is well worth doing to
eliminate right recursion.

For those rare situations where right recursion or other grammar
complexities cannot be eliminated, DEREMER can now produce code in the
generated parser to check dynamically for overflow of the state and
symbol stack. If an overflow happens, the user-supplied routine
"dp$__overflow" will be called; this routine should display an- error

PRIME RESTRICTED Page 18

The DEREMER Parser Generator PE-T-535 (Rev. 6)

message and never return to the parser. The generation of this extra
code is enabled by specifying the "%CHECK_STACK;" directive.

7 Practical Hints

7.1 Variable Names

All parser internal variables have names beginning with the characters
'dp$_'. You should avoid using variables beginning with these
characters, unless you have a specific reason to interface with
internal variables of the parser.

7.2 Semantic Values

As we have seen above, DEREMER associates two different kinds of values
with each token returned by the lexer procedure. The first kind, an
integer, is used purely for syntactic analysis. This means that it is
used to look up the next parser state in the parser tables. The second
kind, a pointer, is not used by the parser itself, but is available to
semantic actions via the notations '$$' and *$n'. This latter kind of
value is called a semantic value.

Prior to executing each semantic action, the default action '$$=$1;' is
executed. This action stores the element of the parser symbol stack
(semantic value stack) corresponding to the first symbol on the right
hand side into an internal variable named dp$_reduce_result. Any user
semantic action that assigns a new value to '$$' will actually assign
the new value to dp$_reduce_result, overwriting the default value.
Finally, after any user semantic action is done, the parse stack is
popped (to discard the shifted symbols) and dp$_reduce_result is pushed
onto the stack.

Semantic values are represented by pointers because this provides a
high degree of generality. A pointer can point to any datatype or
|structure legal in a PLP, PLIG, PLl, SPL, C, or CC 'based' (or abstract
|structure) declaration. It can even hold one or two integers in its
second and third words, although this usage requires knowledge of the
internal format of pointers and is therefore discouraged.

The calculator example, Calcl, showed one way of using semantic values:
to allocate and free them as needed. A more efficient mechanism to do
this allocation and freeing is shown in the revised example, Calc2, on
the next page.

PRIME RESTRICTED Page 19

The DEREMER Parser Generator PE-T-535 (Rev. 6)

/* An interpreter to do arithmetic calculations on single digits */
%PARSER Calc2 (input_string); /* CHANGED */

%DECLARATIONS
declare input_string char (*) varying;

/* Parameter to the parser procedure */
declare input_position fixed bin;
declare free_ptr pointer; /* ADDED */
declare 1 value (100) like based_value; /* ADDED */
declare 1 based_value based, /* ADDED */

2 next_free_value pointer,
2 integer fixed bin (31);

declare j fixed bin (15); /* ADDED */
declare rank builtin;

/* A function to return the ASCII code for the character */
%Include •Calc2.ins.pll'; /* CHANGED */
%END_DECLARATIONS;

%T0KEN plus_ , star_ , left__paren_ , right_paren_ , digit_, end_;

%RULES;
<input_line> ::= <expression> end_
*
<expression> ::= <expression> plus_ <term>

%ACTION /* CHANGED */
$$ -> based_value.integer =

$1 -> based_value.integer +
$3 -> based_value.integer;

call drop ($3);
%END_ACTION

| <term> /* Default action is '$$ = $1;' */

<term> ::= <term> star_ <primary>
%ACTION /* CHANGED */
$$ -> based_value.integer =

$1 -> based_value.integer *
$3 -> based_value.integer;

call drop ($3);
%END_ACTION

| <primary>
t

<primary> ::= digit_
| left_jparen_ <expression> right_paren_

%ACTI0N
$$ = $ 2 ;
%END_ACTION

i

%INIT
inputjposition = 1 ;
/* ADDED: Initialize list of integer values */
freejptr = addr (value(l));
do j = 1 to hbound (value, 1) - 1;

value (j) ,next_free_value - addr (value (j + 1). next_f ree_yalue.) ;

PRIME RESTRICTED Page 20

http://�Calc2.ins.pll'

The DEREMER Parser Generator PE-T-535 (Rev. 6)

end;
value(hbound(value,1)).next_free_value = null ();
%END_INIT;
%PROGRAMS
lexer:

procedure (type, value jptr);
del type fixed bin (15);
del value jptr pointer;
del current_char char (1);

/* Value returned will be undefined by default */
value jptr = null ();

/* Return 'end • token at end of string */
if input__positXon > length (input_string)
then
do;

type = end_;
return;

end;

/* Get next character */
current__char = substr (input_string, inputjposition, 1);
input_position = inputjposition + 1;
/* Return proper token for current character */
select (current__char);

when (' + ') type = plus__;
when ('*') type = star_;
when (• (•) type = left_paren_;
when (')') type = rightj?aren_;
when (,0','l'f

,2,,'3'/
,4,,,5,,,6,,,7,,,8,,,9')

do;
type = digit_;
call make (valuejptr); /* CHANGED */
value jptr -> /* CHANGED */

based_value.integer = rank (current_char)
- rank ('0•);

end;
otherwise type = 0 ; /* To detect illegal characters */

end; /* end of select statement */
end lexer; /* end of PROGRAMS section */

make: /* ADDED */
procedure (value jptr);

del value_ptr pointer;
value jptr = freejptr;
free__ptr = freejptr -> based_value.next_free_value;

end make;

drop: /* ADDED */
procedure (value jptr);

del value jptr pointer;

PRIME RESTRICTED Page 21

!

The DEREMER Parser Generator PE-T-535 (Rev. 6)

if value_ptr A= null ()
then
do;

value_ptr -> based_value. next__f ree_value = freejptr;
free_ptr = value_ptr;

end;
end drop;

%END PROGRAMS;

%END_PARSER;

The changes and additions shown above maintain an array of linked
structures, each containing one semantic value (in this case, an
integer). The allocation procedure 'make' and the deallocation
procedure 'drop' must be called explicitly when needed, just as in
•Calcl* above. Failing to deallocate (free or drop) a semantic value
may result in running out of free values at run time. This error may
be very difficult to debug, since all grammar rules and actions will
have to be examined.

Another way to use an array of linked structures is to use them freely
in semantic actions without doing any deallocating, and to initialize
(link) them at each call to the parser. If this method is chosen,
there is no reason actually to use link pointers; it is simpler to
allocate the data items sequentially from an array, and initialize by
beginning the allocation from the start of the array.

Safer (and more efficient) ways of manipulating semantic values without
requiring explicit allocation and deallocation are possible, but
DEREMER does not support these very well. One possibility is to change
the datatype of a semantic value from pointer to a structure or other
declaration appropriate to your application. This can be done by
writing a series of ED commands to edit the parser appropriately. Then
references to semantic values can look like •$2.integer' (in the case
of a structure) or even just '$2' (but note using structures in this
way is limited by the fact that you cannot assign structures in all the
supported languages; also, passing them as parameters is complicated
by having to write separate entry statements lacking the member names).

Another possibility is to ignore the value pointers entirely (it may,
however, be necessary to set them to null) and define one or more
arrays of items of the desired datatype in parallel with the parser
array (dp$_symbol_stack). The new parallel array(s) can be indexed by
the appropriate offset from the parser stack pointer
dp$__symbol__stack_jptr, which is a fixed bin (15). Note, however, that
the constructs '$$' and '$n' will be useless, since these translate
into the pointer references 'dp$_reduce__result• and
•dp$_symbol stack(dp$_symbol__stack_ptr - x)' respectively, where x =
length_pf_rTght_hand__side - n. Tnus, referencing semantic values in a
parallel stack requires a notation such as 'value (dp$_symbol_stackjptr
- x)' instead of • $n'.

PRIME RESTRICTED Page 22

The DEREMER Parser Generator PE-T-535 (Rev. 6)

7.3 The Parser

The parser is constructed as a function of as many arguments as you
indicate in the %PARSER directive. It returns a semantic value
(pointer) as its function value. The parser may be called as a main
program (in which case the returned pointer is ignored by Primos) or
may be called by a function reference from your application program.
An example of the latter usage is

program_tree = parse ();

for a parser declared by the directive '%PARSER parse;'.

7.4 The Lexer

The lexer is called by the parser every time it needs the next lexical
item (token) appearing in the application's input. Aside from writing
the lexer, you must either include it as an internal procedure in the
%PROGRAMS section of the input file, declare it as an external entry,
or % Include it in the %PROGRAMS section. In any case, the lexer takes
two arguments. The first is of type fixed bin(15), and is used to
return (that is, the lexer assigns a value to this argument) the
integer type code of a token. The second argument is of type pointer,
and is used to return the semantic (user) value of a token. You are
strongly urged to % Include the name. INS. PL1 file in the lexer or in the
%DECLARATIONS section of the input file so that the lexer refers to the
symbolic names of the tokens, rather than actual numbers.

When the language defined by your grammar is not clearly terminated
(which causes a warning issued by DEREMER), the parser may need to read
an extra token beyond those specified by the grammar. This is the
"right pad" symbol which signals that the final reduction(s) should
take place. In these cases, where there is no explicit end-of-input
token, the lexer should return 0 or a negative number as the token type
which indicates end of input. To avoid this situation, use an explicit
end-of-input token, such as 'end_' in the 'Calcl' example.

7.5 Use of Precedence and Associativity

These are powerful mechanisms, described in Advanced Features below,
which should be used sparingly because they can hide deeper problems
with a grammar. It is a good idea to begin by declaring all tokens
using %TOKEN, and to use the precedence mechanisms only to resolve
specific shift-reduce conflicts which come up. Don't try to anticipate
a shift-reduce conflict until you've had some practice.

PRIME RESTRICTED Page 23

The DEREMER Parser Generator PE-T-535 (Rev. 6)

8 The DEREMER Algorithm

The parser generation method used is based upon the Ph.D thesis of
Franklin L. DeRemer [DeRemer 69]. This algorithm handles LALR(l)
grammars (technically, "Not-Quite-LALR(l)" grammars), which are
somewhat restricted subsets of LR(1) grammars, which in turn are very
restricted subsets of Context Free Grammars.

The recognizing of grammar rules is done in a strict bottom-up fashion.
For example, in the rule

<term> ::= <term> star__ <primary>

the processing occurs in the following order: (1) All recognitions
connected with the non-terminal symbol <term> on the right hand side;
(2) the shifting of the token ' star__'; (3) All recognitions connected
with the non-terminal symbol <primary>; (4) The recognition of the
rule itself.

The original DEREMER was written in FORTRAN and generated an open coded
FORTRAN parser. The current version is basically a conversion to PLP
having some additional technique inspired by [Aho&Ullman 77], an
efficient table-packing scheme, error recovery as described in [Poonen
77], and user and semantic interfacing largely modelled after YACC
[Johnson 74].

Some thought has been given to the question of generating lexers
automatically. Given regular expressions for each of the token types,
it should be possible to do this using the type of technique described
by Larry Stabile [PE-T-444, 488].

9 Debugging a Parser; How It Works

You have written a grammar and incorporated it, with semantic actions,
into a DEREMER input file. You have run the input file through DEREMER
and produced a parser. The next step is to correct any error messages
reported by DEREMER. Some help with this is provided under DEREMER
Error Messages below. Finally, you are able to obtain a parser, it
compiles and links without error, but when it is run it produces the
wrong results in that

(1) a syntactically correct input string produces a syntax error,

(2) an incorrect input string produces no error, or

(3) a correct input string produces the wrong semantic result.

Case (3) is usually easy to diagnose when the semantic actions fit
naturally with the grammar, and when the parser is producing the
correct analysis of an input string. This discussion concentrates on
cases (1) and (2) where it is clear that the parser is not analyzing
the input string correctly.

PRIME RESTRICTED Page 24

The DEREMER Parser Generator PE-T-535 (Rev. 6)

First of all, make sure that the grammar is processed without any error
messages from DEREMER.

Next, re-run DEREMER with the '-debug* command option to produce a file
named •name.DEBUG.lang•. Compile and link this parser, along with your
lexer. The resulting program can be run with various test cases in
order to see exactly what is happening wrong. Messages will be
displayed showing every action taken by the parser. Note that such
DEBUG parsers use the system subroutine IOA$ (see PE-T-364 for a
description of IOA$). Do not confuse the •-debug• option for DEREMER
|with the '-debug' option of PLP, PL1G, PLl, SPL, C, or CC.

The material below explains how to understand the operation of your
parser in detail, should you encounter a problem that cannot be solved
using the '-debug' option.

Important Note; It is rarely necessary to examine the parser states as
described in the remainder of this section. This material is included
for the sake of completeness and may be ignored until needed.
Examining the grammar and running a parser created using the '-debug*
option are the only debugging methods most users will ever need.

To get a detailed listing of the parser states, run DEREMER with the
'-fsa' option. Get listings of the 'name.lang.DEREMER' file and of the
resulting 'name.FSA' and 'name.INS.PLl' files.

You can simulate the operation of the parser by tracing through the FSA
file, as described below.

Alternatively, you can actually run the parser in steps, tracing
through its operation using the Primos debugger (DBG). To do this,
1 compile the parser using the '-debug' option of PLP, PL1G, PLl, SPL,
|CC, or CI. Next, link your application or test using SEG or BIND.
Invoke DBG on your runfile, and set a breakpoint at the label
*dp$_loop' within the parser. This is the point within the parser's
interpretation loop where it decides which action to perform. The
variables ' dp$_current_state' and 'dp$_tkntyp* are the current state
number and the token type code respectively. Also, there is a Boolean
variable called 'dp$__lookahead_valid* whose usage is explained below.
By examining the values of these variables each time around the
interpretation loop, you should be able to follow the action of the
parser from state to state as it parses a given input. You need the
name.INS.PLl file or the dp$_token_name function to translate token
type codes back to token names.

To understand what is happening inside the parser, you need a more
detailed explanation of the parser's operation.

Conceptually, the DEREMER-generated parser consists of a set of states,
with parsing actions defined for each state which are dependent on the
current lookahead symbol.

The parser maintains 2 stacks, a state stack which stores parser state
numbers, and a symbol stack which stores the semantic values (pointers)

PRIME RESTRICTED Page 25

The DEREMER Parser Generator PE-T-535 (Rev. 6)

associated with terminal and nonterminal symbols. When the parser is
initialized, both stacks are empty and the current parser state is
always state 1.

The bit variable 'dp$_lookahead_yalid' is used to remember whether the
current token has already been shifted or not. It is initialized to be
•O'b.

When the parsing actions defined for the current state consist of one
possible reduction and no shift actions, the parser doesn't need to
know the lookahead symbol. Otherwise, (if the current state has any
shift actions or more than one possible reduction) the parser must see
the lookahead symbol in order to decide which action to take. In this
situation, if 'dp$_lookahead_valid' is false, then the parser calls the
lexer, thus obtaining the next token, and sets 'dp$_lookahead_valid' to
be •l'b.

Sample Output Files below contains the CALCl.FSA file describing the
example grammar. You may wish to refer to it as you read on.

You can see that the '-fsa' output shows the set of parser states, with
the actions listed for each state. Each shift action is denoted in the
name.FSA file by a line of the form

ON token-name GO TO state-number.

When the parser executes this action,

(1) the current state number is pushed onto the state stack,

(2) the token value is pushed onto the symbol stack,

(3) 'dp$_lookahead_valid, is set to 'O'b,

and the next state is the "state-number" mentioned in the shift action.

Each reduce action is denoted by a set of three lines of the form

ON token1 token2 ...
grammar_ru1e
(fl,tl) (f2,t2) ...

When this reduce action is occurs, the parser performs the following
operations:

(1) The semantic action associated with "grammar_rule" is
performed.

(2) The top n-1 state numbers on the state stack and the top n
values on the symbol stack are popped, where n is the number of
symbols on the right hand side of "grammar__rule".

(3) The result of the semantic action generated by step (1) is
pushed onto the symbol stack.

PRIME RESTRICTED Page 26

The DEREMER Parser Generator PE-T-535 (Rev. 6)

(4) The number on the top of the state stack is compared with the
first elements of the ordered pairs (fl,tl) (f2,t2) ... When a
match is found, the next state of the parser is the second element
of the pair whose first element matches.

Note that a reduce action does not invalidate the lookahead symbol.

At this point an example would be helpful. Consider the input string

3 + 1 * 5

having the token representation

digit_ plus__ digit_ star_ digit_ end_

The successive actions of the parser can be described by the sequence
of snapshots shown on the next page:

PRIME RESTRICTED Page 27

The DEREMER Parser Generator PE-T-535 (Rev. 6)

Stacks

(empty) < — State Stack
(empty) < — Symbol Stack

1
digit_

<primary>

1
<term>

<expression>

1 13
<expression> plus_

1 13 3
<expression> plus_ digit_

1 13 3
<expression> plus_ <primary>

1 13 3
<expression> plus_ <term>

1 13 3 12
<expression> plus_ <term> star_

1 13 3 12 4
<expression> plus_ <term> star_ digit_

1 13 . 3 12 4
<expression> plus_ <term> star_ <primary>

1 13 3
<expression> plus_ <term>

<expression> end_

<input_line>

Current State

1

7

6

10

13

3

7

6

12

4

7
.git_

5
:primary>

12

13

2

Lookahead Symbol

digit_

(invalid)

(invalid)

plus_

plus_

digit_

(invalid)

(invalid)

star_

digit_

(invalid)

(invalid)

end_

(invalid)

(invalid)
(accept)

You are encouraged to construct other short examples of input strings
and hand-simulate the operation of the parser using the FSA file, as
done here.

Two additional notations may occur within an FSA file. The symbol
is used to .represent the "right pad" character which implicitly
terminates every input string. Parsers for languages which are clearly

PRIME RESTRICTED Page 28

The DEREMER Parser Generator PE-T-535 (Rev. 6)

terminated never need to read this token. Parsers for languages which
are not clearly terminated may occasionally read this "extra" token,
but they never shift it. It serves to trigger the final reduction(s)
of the parser.

The symbol '<' appearing as a nonterminal symbol is used as a DEREMER
generated start symbol in cases where the user's start symbol is used
on the right hand side of some production. If the start symbol is
recognized, there are instances where the symbol is used as a
constituent and others where it indicates that the parser should
return. DEREMER removes this confusion by adding a production at the
head of the grammar (a process called "augmentation") whose form is

< ::= <user_start_symbol> ;

This operation is performed only if the user's start symbol appears on
the right hand side of a rule. The use of an unmatched left angle
bracket for this purpose ensures that it can never conflict with a
user-defined nonterminal.

10 Sample Output Files

On the following pages are the files CALC1.FSA, CALC1.INS.PL1,
CALC1.GRAMMAR, and CALC1.SPL resulting from processing the input file
CALC1.SPL.DEREMER listed above.

PRIME RESTRICTED Page 29

The DEREMER Parser Generator PE-T-535 (Rev. 6)

10.1 CALC1.FSA

state 1:
on digit_ go to 7.
on left__paren_ go to 8.

state 2: (final state)
on ;
1. <input_line> ::= <expression> end_

•

state 3:
on digit_ go to 7.
on left__paren_ go to 8.

state 4:
on digit_ go to 7.
on left_paren_ go to 8.

state 5:
on star_ right_paren_ plus_ end_
4. <term> ::= <term> star_ <primary>

(1, 10) (8, 10) (3, 12) .

state 6:
on star_ right__paren_ plus_ end_
5. <term> ::= <primary>

(1, 10) (3, 12) (8, 10) .

state 7:
on star_ right_paren_ plus_ end_
6. <primary> ::= digit_

(1, 6) (3, 6) (4, 5) (8, 6) .

state 8:
on digit_ go to 7.
on left_paren_ go to 8.

state 9:
on star_ right_j?aren_ plus_ end_
7. <primary> ::= left_j>aren_ <expression> right_jparen

(1, 6) (3, 6) (4, 5) (8, 6) .

state 10:
on star_ go to 4.
on right_paren_ plus_ end_
3. <expression> ::= <term>

(1, 13) (8, 11) .

state 11:
on rightjparen_ go to 9.
on plus_ go to 3.

state 12: * -

PRIME RESTRICTED Page 30

The DEREMER Parser Generator PE-T-535 (Rev. 6)

on star_ go to 4.
on end__ right__paren_ plus_
2. <expression> ::= <expression> plus__ <term>

(8, 11) (lr 13) .

state 13:
on plus_ go to 3.
on end_ go to 2.

PRIME RESTRICTED Page 31

The DEREMER Parser Generator PE-T-535 (Rev. 6)

10.2 CALC1.INS.PL1

I*

I*
/,*

/*

associativities: token(1),
prec(
prec(
prec(
prec(
prec(
prec(

1) F

1)/
1)/
1)/
1)/

assoc(
assoc(
assoc(
assoc(
assoc(
assoc(

1)
1)
1)
1)
1)
1)

left(2), right(3)f nonassociating(4). */
*/ %replace plus_ by 1;
*/ %replace star_ by 2;
*/ %replace leftj?aren_ by 3;
*/ %replace right_paren_ by 4;
*/ %replace digit_ by 5;
*/ %replace end_ by 6;

10.3 CALC1.GRAMMAR

/* associativities: token(l),
/* prec(1), assoc(1).
end_
/* prec(1), assoc(1).
plus_ <term>
/* prec(
/* prec(
ary>
/* prec(
/* prec(
/* precj
ression>

0),
1).

0),
1).
1).

assoc(
assoc(

assoc(
assoc(
assoc(

ri ght_paren_

1).
1).

1).
1).
1).

left(2), right(3), nonassociating(4). */
1. <input_line> ::= <expression> * /

* /

*/

*',
*/.

2. <expression> ::= <expression>

3. <expression> ::= <term>
4. <term> ::= <term> star_ <prim

5. <term> ::= <primary>
6. <primary> ::= digit_
7. <primary> ::= left_paren_ <exp

PRIME RESTRICTED Page 32

The DEREMER Parser Generator PE-T-535 (Rev. 6)

10.4 CALC1.SPL

Calcl: /* deremer rev 19.0c */
procedure (input_string) returns(ptr);
del dp$_state_stack(200) bin;
del dp$_state_stack_ptr bin;
del dp$_symbol__stack(200) ptr;
del dp$_symbol__stack_ptr bin;
del dp$_reduce_result ptr;
del dp$_current_state bin;
del dp$_action bin;
del (dp$_i, dp$_j, dp$__k, dp$_JL, dp$_m) bin;
%replace dp$_base_ by 1;
%replace dp$_alias_ by 2;
%replace dp$_otherwise_ by 3;
%replace dp$_rhslen_ by 4;
%replace dp$_next_ by 1;
%replace dp$_check__ by 2;
del dp$_top_state bin;
del dp$__tkntyp bin;
del dp$_tknptr ptr;
del dp$_lookahead_valid bit(l);

del dp$_action_list_info(13, 3) bin static init(
/* state 1 */ -2, 1, 0,
/* state 2 */ 0, -1, -1,
/* state 3 */ -2, 1, 0,
/* state 4 */ -2, 1, 0,
/* state 5 */ 0, -1, -4,
/* state 6 */ 0, -1, -5,
/* state 7 */ 0, -1, -6,
/* state 8 */ -2, 1, 0,
/* state 9 */ 0, -1, -7,
/* state 10 */ 0, 10, -3,
/* state 11 */ 3, 11, 0,
/* state 12 */ 0, 10, -2,
/* state 13 */ 4, 13, 0);

%replace dp$_action_list_length by 10;

del dp$_action list(10, 2) bin static init(
/* row 1 *7 8, 1,
/* row 2 */ 4, 10,
/* row 3 */ 7, 1,
/* row 4 */ 3, 11,
/* row 5 */ 3, 13,
/* row 6 */ (1)0, (1)0,
/* row 7 */ 9, 11,
/* row 9 */ (2)0, (2)0,
/* row 10 */ 2, 13);

del dp$_reduce_list_in£o(7, 4) bin static init(
/* production. 1 */ 0, -1, 0, 2,
/* production 2 */ -7, 2, 13, 3,

PRIME RESTRICTED Page 33

- 7 ,
- 1 /
- I f
- 1 /
- 1 /

2 ,
4 ,
4 ,
6 ,
6 ,

1 3 ,
1 0 ,
1 0 ,

6 ,
6 ,

I f
3 ,
I f
I f
3) ;

The DEREMER Parser Generator PE-T-535 (Rev. 6)

/* production 3 */
/* production 4 */
/* production 5 */
/* production 6 */
/* production 7 */

%replace dp$_reduce_list_length by 3;

del dp$__reduce list(3, 2) bin static init(
/* row 1 *7 11, 2,
/* row 2 */ 12, 4,
/* row 3 */ 5, 6);

declare input_string char (*) varying;
/* Parameter to the parser procedure */

declare input_position fixed bin;
declare based integer fixed bin (31) based;
declare rank Euiltin;

/* A function to return the ASCII code for the character */
%Include 'Calcl.ins.pll';

inputjposition = 1 ;
dp$_state_stack_ptr = 0;
dp$_symbol_stack_ptr = 0 ;
dp$__lookahead_valid = *0'b;
dp$_current_state = 1;
do while('l'b);
if Mp$_lookahead_valid & /* don't already have next symbol. */

dp$_action_list_info(dp$ current_state, dp$_alias_) *= -1 /* f
lag that says to read a symbol. *J

then /* read a symbol. */
do;
call lexer(dp$_tkntyp, dp$_tknptr);
dp$_lookahead_valid = 'l'b;

end;
dp$_state_stack_ptr - dp$_state_stack_ptr + 1; /* push current st

ate. */
dp$_state_stack(dp$_state_stack r>tr) = dp$__current_state;
dp$_action «= dp$_access_action_Tist(dp$_current_state, dp$_tkntyp

) ;
dp$_loop:

if dp$_action > 0
then /* shift. */

do;
dp$ symbol_stack_ptr = dp$_symbol_stack_j?tr + 1; /* push cu

rrent symbol. */
dp$_symbol_stack(dp$_symbol_stack_j)tr) = dp$_tknptr;
dp$_lookahead_valid = '0'b;
dp$_current_state = dp$_action;

end;
else

if dp$_action < 0
then /* reduce. */
do; -

PRIME RESTRICTED Page 34

The DEREMER Parser Generator PE-T-535 (Rev. 6)

if dp$_reduce__list_info(- dp$_action, dp$_rhslen__) > 0 /*• h
ave a rhs. */

then /* $$ = $1. (default) */ I |
dp$_reduce__result = j S
dp$_symbol_stack(dp$_symbol_stack_ptr - dp$_reduce_li W

st__info(- dp$_action, dp$__rhslen_) + 1) ;
else /* $$ = null(). */
dp$__reduce_result = null ();

select(- dp$_action); /* a "when (rdn€) do; ... end;" for e
ach reduce. */

when (1)
do;
end;

when (2) j
do;

dp$_reduce__result -> based_integer = j
dp$_symbol_stack(dp$_symbol_stackjptr - 2) -> based_integer +

dp$_symbol_stack(dp$_symbol_stack_ptr - 0) -> based_integer; •
free

dp$_symbol_stack(dp$_symbol_stack__ptr - 0) -> based_integer;

end;
when (3)

do;
end;

when (4)
do;

dp$_reduce_result -> based_integer -
dp$_symbol_stack(dp$_symbol_stack_ptr - 2) -> based_integer *

dp$_symbol__stack(dp$_symbol__stack_ptr - 0) -> based_integer;
free

dp$_syinbol_stack(dp$_symbol_stack_ptr - 0) -> based_integer;

end;
when (5)

do;
end;

when (6)
do;
end;

when (7)
do; i

dp$_reduce_result = j
dp$_symbol_stack(dp$_symbol_stack_ptr - 1) ;

end;
otherwise;

end;
dp$_symbol__stack__ptr = dp$__symbol_stack_ptr - dp$_reduce_li

PRIME RESTRICTED Page 35

The DEREMER Parser Generator PE-T-535 (Rev. 6)

s t _ i n f o (- dp$__action, dp$_rhslen_) + 1 ;
dp$__state_stack__ptr =* dp$ s t a t e stack p t r - dp$__reduce_list

_ i n f o (- dp$_action , dp$_rhslen_);
i f dp$_reduce__list_inf o (- dp$_action, dp$_otherwise_) = 0

then / * accept . * /
do;

return (dp$_reduce__result);
end;

dp$_symbol__stack(dp$_ symbol_stackjptr) = dp$_reduce_result;
dp$_top_state = dp$_state_s tack(dp$_state_s tackjptr) ;
dp$__current_state = dp$__access_reduce_list(- dp$_action, dp

$_top_s ta te) ;
end;

e l s e
i f dp$_action = 0 / * only opt ion l e f t ! * /

then /* error . * /
do;

r e t u r n (n u l l ()) ;
end;

dp$_next:
end;

dp$_number_of _act ions J
procedure(statejnumber) re turns (b in) ;

de l state_number b in;
del (i , j , k, 1) b in;
k = 0; / * count of a c t i o n s . * /
i = dp$__action_list_info(state_number, dp$__alias_);
do j - 1 t o dp$__action l i s t _ l e n g t h ;

1 = j - dp$_action_lTst_info(state_number, dp$_base_);
i f d p $ _ a c t i o n _ l i s t (j , dp$_check_) = i

then
if 1 A= -1
then
k = k + 1;

end;
return(k);

end /* of dp$_number_ofractions */;
dp$_nth action:
procedure(state_number, n) returns(bin);
del (state_number, n) bin;
del (i, j, k, 1) bin;
k = 1;
i = dp$_action_list__info(state_number, dp$_alias_);
do j = 1 to dp$_action_list_length;
1 = j - dp$_action_list_info(state_number, dp$_base_);
if dp$_action_list(j, dp$_check_) = i
then
if 1 ~= -1
then
if k » n
then
return(l);

else
k = k + 1;

PRIME RESTRICTED Page 36

The DEREMER Parser Generator PE-T-535 (Rev. 6)

end;
return(O); /* should never get here. */

end /* of dp$_nth_action */;
dp$_access_action_list:
procedure(row, offset) returns(bin);
del (row, offset, i) bin;
i = dp$_action_list_info(row, dp$_base_) + offset; /* base(s) + a *

if i >= 1 & i <= dp$_action_list_length
then /* inside bounds, consult table. */
if dp$_action_list(i, dp$_check_) =

dp$_action_list_info(row, dp$_alias_)
then /* match! check(base(s) + a) = alias(s) *'/
return(dp$_action_list(i, dp$_next_)); /* next(base(s) + a)

*/
/* get here if outside bounds of table, or no match. */
return(dp$_action_list_info(row, dp$_otherwise_)); /* otherwise(s)

*/
end /* of dp$_access_action_list */;

dp$_access_reduce_list:
procedure(row, offset) returns(bin);
del (row, offset, i) bin;
i = dp$_reduce_list_info(row, dp$_base_) + offset; /* base(s) + a * /
i f i >- 1 & i <= dp$_reduce_list_length

then /* inside bounds, consult table. */
i f dp$_reduce_list(i, dp$_check_J =

dp$_reduce_list_info(row, dp$_alias_)
then /* match! check(base(s) + a) = a l ia s (s) */

return(dp$_reduce_list(i, dp$_next_)); /* next(base(s) + a)
*/

/* get here if outside bounds of table, or no match. */
return(dp$_reduce_list__info(row, dp$_otherwise_)); /* otherwise(s)

*/
end /* of dp$_access_reduce_list */;

dp$_token_name:
procedure(n) returns(char(32) varying);
del n bin;
go to name(n); name(1)

name(2)
name(3)
name(4)
name(5)
name(6)

return('plus_');
return('star_');
return(*left_paren_');
return('right_paren_•);
return('digit_');
return(•end_ *) ;

end /* of dp$_token_name */;

lexer:
procedure (type, value_jptr);

del type fixed bin (15);
del value_ptr pointer;
del current_char char (1);
/* Value.returned will be undefined by default */
value_ptr = null ();

PRIME RESTRICTED Page 37

The DEREMER Parser Generator PE-T-535 (Rev. 6)

/* Return 'end_' token at end of string */
if input__position > length (input_string)
then
do;

type = end__;
return;

end;
/* Get next character */
current_char = substr (input__string, input_position, 1);
input_jposition = input_position + 1;
/* Return proper token for current character */
select (current_char);

when (' + ') type = plus_;
) type = star_;
) type = left_paren_;
) type = right_paren_;
,,1',,2,,,3,,,4','5','6','7

C(
C)
(•0 8 9')

when
when
when
when
do;

type - digit_;
allocate based_integer set (value_ptr);
value__ptr -> based_integer = rank (current_char)

- rank (' 0 •) ;
end;
otherwise type = 0 ; /* To detect illegal characters */

end; /* end of select statement */
end lexer; /* end of PROGRAMS section */
end /* of Calcl */;

PRIME RESTRICTED Page 38

The DEREMER Parser Generator PE-T-535 (Rev. 6)

11 Advanced Features

11.1 Ambiguity Resolution using Precedence and Associativity

DEREMER generates parsers for the subset of context free grammars
called LALR(l), which stands (roughly) for Look Ahead Left-to-Right
using jL look-ahead symbol. This means that the parsing of input
strings takes place left to right, with no backup or indeterminacy,
with a lookahead of exactly 1 symbol. Recall that the parser
alternates between shifting symbols onto its stack and reducing stack
symbols to form nonterminals. At.each point in the process, a decision
is made whether to shift or reduce. This decision is based upon the
current state of the parser and the. "next", or lookahead, symbol. For
certain grammars,o it may not be possible for DEREMER to make a clearcut
decision for all° combinations of. current state and lookahead symbol.
This happens because a grammar is inherently ambiguous, or because its
parsing requires a lookahead of 2 or more symbols, or for an assortment
of other possible reasons. When the choice is between a shift and a
reduce, DEREMER reports a shift-reduce conflict. In certain cases, a
parser may have a choice of more than one possible reduction. This is
called a reduce-reduce conflict.

For each type of' conflict, DEREMER has a default resolution. For
reduce-reduce; conflicts, the default is to reduce by the production
which appears first in the grammar. Experience has shown that this
type of situation almost always results from ambiguity in the grammar
and should be eliminated if possible. Otherwise, it may produce
surprising or incorrect results.

For shift-reduce conflicts, in the absence of specific precedence and
associativity rules (described below), the default is to shift. This
favors longer rules over shorter ones.

The statement.that a grammar is ambiguous indicates that there are
legal input strings which can be parsed in more than one way. The
existence of these, alternatives shows up in the parser as parsing
conflicts, which represent the points where a choice between
alternatives must be made.

Ambiguity in a parser may result from improper arrangement of the
rules, or may be unavoidable in that more than one look-ahead symbol is
required to recognize the language. In the latter case, doing the
look-ahead in the lexer can provide a solution.

When rearrangement of the grammar is indicated, the number of rules
added to resolve a shift-reduce or reduce-reduce conflict can be
limited by making use of the DEREMER precedence and associativity
features.

These terms are explained (and these features are used) most naturally
in the context of infix algebraic expressions. In an expression of the
form

PRIME RESTRICTED Page 39

The DEREMER Parser Generator PE-T-535 (Rev. 6)

digit1 opl digit2 op2 digit3

the statement that opl has higher precedence than op2 indicates that
the operand digit2 should "bind closer" to opl than to op2, and
therefore that opl is performed first, with its result used as the left
operand of op2. If instead op2 has higher precedence than opl, then
op2 is performed first, and its result becomes the right operand of
opl.

If opl and op2 have equal precedence (most notably if opl and op2 are
instances of the same operator), then the choice depends upon the
associativity, i.e. whether the operators group to the left, right, or
neither side.

Calcl, an unambiguous grammar, enforces a particular order of
evaluation by using the nonterminals <term> and <primary>, together
with the "single" or "chain" rules

<expression> ::= <term> and <term> ::= <primary>

to establish a particular constituent relationship between groups of
input symbols. If these extra nonterminals and single productions are
removed, the result is the set of grammar rules we shall call Calc3:

/* Calc3 */
<input_line> ::= <expression> end__
•
<expression> ::= <expression> plus_ <expression>

| <expression> star_ <expression>
| left_paren_ <expression> right_paren_
| digit__

This grammar is more concise than Calcl, and in certain ways it is more
natural.

The difficulty with the concise grammar is that it is ambiguous. In
particular, there are two possible interpretations for the input string

3 + 4 + 5

corresponding to

(3 + 4) + 5

and

3 + (4 + 5)

The same applies to the input strings

3 * 4 * 5

PRIME RESTRICTED Page 40

The DEREMER Parser Generator .. - .. PE-T-535̂ (Rev.,-"(5)

3 + 4 * 5 .-• ..-,,,.. i-.7tV,.-?-> <':/'»*".'.:

3 * 4 + 5 -:.;.•..• •;«:A.l:L~"\i¥'<

In each case, the conflict occurs between the second digit and -the
second operator. The parser has the choice of reducing two digits and
an operator to an <expression>, thus performing the leftmost operation
first, or it may shift the second operator, which effectively causes
the rightmost operation to be performed first.

One deals with these conflicts by specifying precedences and
associativities for 'plus__' and 'star_'. The necessary mechanisms are

(1) an input format for declaring the precedences and
associativities to DEREMER, and

(2) an algorithm by which DEREMER translates the precedences and
associativities into a specific choice of shift or reduce.

The input format works as follows: Each token which appears in a
%LEFT, %RIGHT, or %NONASSOC is assigned the associativity "left",
"right", or "nonassociative". Each successive %LEFT, %RIGHT, or
%NONASSOC statement causes the tokens appearing within that statement
to be assigned a precedence higher than all previously declared tokens.
Tokens appearing within %TOKEN statements, and those which are not
declared at all, receive no precedence or associativity.

Each production of the grammar normally takes the same precedence and
associativity as the precedence and associativity of its rightmost
token (terminal symbol). This may be overridden by attaching the
keyword %PREC, followed a token name, after the grammar rule (before- or
after the %ACTION clause). When a %PREC is supplied, the production
takes the precedence and associativity of the token which follows
%PREC.

Here is an example of a grammar using most of the features just
discussed:

/* Calc4: Using %LEFT, %RIGHT, and %PREC */
%TOKEN left_paren_ , right_paren_ , digit_;
%LEFT minus_;
%RIGHT expt_; /* Exponentiation has higher precedence than minus

and is right-associative */
%LEFT uminus_; /* Unary minus has higher precedence than minus */
%RULES;
<expression> ::= <expression> minus_ <expression>

| <expression> expt_ <expression>
| minus_ <expression>

%PREC uminus_ /* Use precedence of uminus_ */
| digit_
| left_paren_ <expression> right_j?aren_

Note here that 'uminus_' is never returned by the lexer. It~exists

PRIME RESTRICTED Page 41

The DEREMER Parser Generator PE-T-535 (Rev. 6)

only to indicate the precedence of the unary minus grammar rule.

When a shift-reduce conflict occurs, the precedences of the conflicting
symbol and production are checked. If either lacks a precedence
(because of a declaration by %TOKEN), the default action is taken: the
conflict is reported, and then is resolved in favor of shift. If both
symbol and production have precedences, then the conflict is resolved,
without user notification, according to the following table:

Shift-Reduce Conflict Resolution

Associativity: left right nonassoc

prec(production) < prec(symbol)

prec(production) > prec(symbol)

prec(production) = prec(symbol)

<

<-

reduce

shift

reduce

shift syntax error

These rules cause resolution of shift-reduce conflicts such that the
resulting evaluation order conforms with the precedences and
associativities. For instance, if the token plus_ is defined as left
associative, then the input string

3 + 4 + 5

is taken as equivalent to

(3 + 4) + 5

with the other interpretation enforced by declaring plus_ as right
associative. A similar effect occurs for star_. If star_ is given a
higher precedence than plus__ (the standard algebraic usage), then the
strings

and

3 + 4 * 5

3 * 4 + 5

both have their multiplications performed first. If the precedence
order is reversed, the evaluation order is also reversed. If plus__ and
star_ are defined with the same precedence, then the operations will
group to the left or right depending on the associativity. The
"nonassoc" category is useful for operators such as comparisons, for
which (in the FORTRAN notation) expressions like

3 .LT. 4 .LT. 5

PRIME RESTRICTED Page 42

The DEREMER Parser Generator PE-T-535 (Rev. 6)

are illegal.

-•c.j.qa.TM53
11.2 Multiple Parsers

Sometimes, although rarely, it may be convenient to break apart^biie
large grammar into several smaller ones, each with its own DEREMER
input file. For example, a language may have one parser for a
<statement> and another for an <expression>, where the former calls the
latter when necessary. Since the parsers may interact in strange ways,-
a special DEREMER directive, %SYSTEM, has been added to support this
case.

The %SYSTEM directive notifies DEREMER whether the current input file
is a complete parsing specification or is a part of a larger system,
and if a part, whether it is a main (controlling) or subsidiary part.
Here are the options:

%SYSTEM INTERNAL; : This is a complete parsing specification
(default).

%SYSTEM EXTERNAL; : This is a main, controlling part.

%SYSTEM INHIBIT; : This is a subsidiary part.

This mechanism controls the declarations of some variables (that is,
whether they are local or global), and the contents of the
name.EXTERNALS and name.INS.PL1 files.

For example, suppose you have the DEREMER input files shown on the next
page. -'

G".

PRIME RESTRICTED Page 43

(a .vsfi) z

The DEREMER Parser Generator PE-T-535 (Rev. 6)

STMT.SPL.DEREMER

%PARSER Stmt;
%SYSTEM EXTERNAL;
%DECLARATIONS
%Include •stmt.ins.pll';
declare expr entry returns (ptr);
%ENDJDECLARATIONS;
%Include 'stmt.token.directive';
%RULES;
<stmt> : : = . . .
a
I •

...
<expr> ::= /* Empty string, since the tokens are read in the

expr parser */ '
%ACTION I
$$ = expr (); /* Call to subsidiary part */
%END ACTION

~~ i
%END__PARSER;

EXPR.SPL.DEREMER

%PARSER expr;
%SYSTEM INHIBIT;
%DECLARATIONS
%Include 'stmt.ins.pll';
declare expr entry returns (ptr);
%END_DECLARATIONS;
%Include 'stmt.token.directive';
%RULES;
<expr> ::= ...

%END PARSER;

STMT.SPL.DEREMER generates the files STMT.SPL, STMT.INS.PLl, and
STMT.EXTERNALS; EXPR.SPL.DEREMER generates only EXPR.SPL.

Since both parsers operate on the same input, they both % Include the
file STMT.TOKEN.DIRECTIVE so that they share the same token names. The
generated parsers both %Include the file STMT.INS.PLl for the same
reason.

When you compile and link all the files, be sure to remember
STMT.EXTERNALS, which contains the debugging function dp$_token_name.

Note that INTERNAL, EXTERNAL, and INHIBIT are reserved identifiers, ..so
that it is illegal to declare them in a %TOKEN directive or use them in
any other sense than the one described here. Naturally, these -options

PRIME RESTRICTED Page 44

The DEREMER Parser Generator PE-T-535 (Rev.. 6)

&&** •")

:i2L .:;^3Haa SI

Q -c 2bni3(©jriT

can be given in upper or lower case.

11.3 Calling the Recovery "Procedure

Thej internal , mesohanisiri for recovering -; from syntax- A errorsT' (£$
encapsulated into a procedure named ' dp$_recover • . This procedure smafy
be called from inside %ACTION sections. av^ii ..cî coi

This procedure will not normally return - it will do a non-local." goto
to the label 'dp$_next', in the main parser loop (this isPwheremaM
semantic actions go when they are done). The exception is if cfc&e
entire rest of the input is swallowed^without having recovered. In
this case, dp$ recover will return. "" •-•r-;.c v:v? . • tE/iai? '7*•-JA>I' .*£;

"••̂ •* - ; k V rf£ •i^5- , • • -\ » ^ \ ;*o*»9
Note - This procedure, along with other mechanisms to support the
SYNTAX_ERROR feature, is only included in the parser if you have'ufeed
SYNTAXJERROR at least once in your rulesv•' ;•'. ™- 'i£:f- T . '.ra.-file

-̂ '.-'-.vo iso i "u; .. .~ j ;o able
-' '•• '*•. «"' i: ..0 v.3 t- . i .••it.j.. "x srl»

11.4 Parser Table Format . ctj* - •: v̂ .sq c-. t93jsr;

The parser listing under CALCl.SPL above shows what the parser tabfles
look like. -There are four tables, packed in order to make full use/cof
the space. Since they are packed, they are accessed almost exclusively
by means of specialized unpacking procedures. The parser tables . &K&re
the following formats:.-

1. dp$_action_list_irifo (state i--x)-v±.(Siv&s. irifbrmation_j.cprtce5ci^lg
the list of actions for each stated, MX H may be • dp$'_toas%c',
' dp$_alias_*, or 'dp$_otherwise_J and' is used-by the stable
packing algorithm.

2. dp$_action_list (x, y) : Contains a list of actions for each
ZL state. "Y" may be 'dp$_next_' or ,dp$_check_'. Both "x" and

"y"-, are used by the table packing algorithm.
* " • • ' • . . .• , . 1 . J . , (• • .

3. dp$_reduce_list_info (production, x) : ̂ Gives-the length ofnithe
right hand side of each rule when "x" is •dj^^hslen^', and
information concerning the list of states used when performing
reductions otherwise, in which case "x" is as described for
dp$_action_list_info above.

4. dp$_reduce_list (x, y) : Contains a list of states used when
performing reductions. "X" and "yM are as described for
dp$_action_list above. :

.> •

. d\i

O-

.IS «

;;/ C A

-.1? ,v* I: j;;;3e:
•' h

PRIME RESTRICTED Page 45

The DEREMER Parser Generator PE-T-535 (Rev. 6)

12 DEREMER Error Messages

The kinds of error messages you may encounter include:

£1) 'EXPECT keyword INSTEAD OF symbol' or 'EXPECT, punctuation INSTEAD
OEnsymbolbo. Check your grammar against the specification of in|mt
format given in section 2. ' -r/aqs.:.-v

{2) 'xxxxjMUST BE yyyy'. These are usually self-explanatory. For
example, the symbols appearing in a %TOKEN statement must be terminal
symbols. ? f
'''•- .-•••'. '^ y "•• \u. '...- '".i ••
(3) 'MAL-FORMED xxxx'. The object referred to 1 is a multi-character
punctuation symbol, such as •/*• or •::='. Check your typing.
(AC)L 'UNDEFINED NONTERMINAL,'xxxx' or 'UNUSEET NONTERMINAL xxxx' You
either forgot to define a nonterminal which appears on the right hand
side of a rule, or you define a nonterminal which does not appear on
the right hand side of a rule and is therefore unnecessary. In either
case, no parser is generated.

(5!) 'READ. ERROR AT LINE nnn WHILE READING xxxx BEGINNING AT LINE iii'
You probably forgot a '*/*, an %END_DECLARATIONS, or an %END_PROGRAMS,
and/JDEREMER is interpreting the rest of your input. : file as'* literal
text. No parser is generated. \:A-f ~.'.rJC r '

(6) 'SHIFT-REDUCE CONFLICT ...' These are discussed under Ambiguity
Resolution using, Precedence and Associativity above. Fix them by some
combination of: (a) rearranging the grammar ' (almost always the
preferred method), .(b) defining the precedence and/or the associativity
of tokens, or (c) using the %PREC mechanism to override the default
precedence of a production.

(7) 'REDUCE-REDUCE CONFLICT ...' Sometimes this is unavoidable,
resulting from the need for more than 1 lookahead symbol. Sometimes,
however, you can obtain the effect of more lookahead by delaying the
point at.which the reduction occurs. For example, consider the grammar

\^:'. is
<s>

<x>
r

<Y>

: : = <X> b x
| <Y> b y

: := a

: := a

This grammar allows two legal input strings, * a b x' and 'a b y *.
Presumably, the semantics attached to the two reductions '<X> ::= a'
and *<Y> ::= a' are different enough to require separate definitions.
After the token 'a' has been read and shifted, it is not possible to
decide which reduction to perform—the token which determines the
correct reduction is hidden. One way to rearrange the grammar is to
write

PRIME RESTRICTED Page 46

The DEREMER Parser Generator PE-T-535 (Rev. 6)

<S>

<X>
«

<y>

::= <X> x
I <Y> y

: := a b

: := a b

which defers the reduction to <X> or <Y> until either x or y
lookahe'ad symbol. The semantics must be adjusted accordingly.

is the

(8) 'WARNING: LANGUAGE NOT CLEARLY TERMINATED. This parser may need
to read an extra symbol.' The language defined by your grammar (that
is, by the start symbol) contains at least one pair of legal strings
such that the first string is a prefix of the second string. Calcl
would be such a grammar if the 'end_' symbol were omitted. Consider
the input strings • 3 • and ' 3+4' . When the parser for this grammar has
read the symbol '3', it must decide whether to accept (reduce) or to
read on (shift). It makes the decision by readinig one extra symbol to
see whether it is a ' + ' (or a ' * ') . If it is neither, the parser
accepts '3'. However, the extra symbol (which may be the first symbol
of the next input) has already been read.

You can eliminate this problem by defining an end-of-input token,
either as part of the input language itself or as something the lexer
supplies. This is illustrated by the token ' end_' in the example
grammar Calcl above.

13 References

[Aho&Ullman 77]

[DeRemer 69]

[DeRemer 71]

[Johnson 74]

[Poonen 77]

Alfred V. Aho and Jeffry D. Ullman, Principles of
Compiler Design, Addison-Wesley 1977 (especially
chapter 6).

Franklin L. DeRemer, "Practical Translation for
LR(k) Languages", Ph.D thesis, MIT 9/69

Franklin L. DeRemer, "Simple LR(k) Grammars"., CACM
7/71 p. 453

Stephen C. Johnson, "YACC - Yet Another Compiler
Compiler", Bell Laboratories Computer Science
Technical Report 32

George Poonen, "Error Recovery for LR(k) Parsers",
submitted for publication in "Computer Software".

PRIME RESTRICTED Page 47

	Cover Page
	i
	Table of Contents
	ii
	iii
	iv
	Introduction
	2
	Input Format
	3
	4
	5
	6
	7
	8
	9
	10
	Invoking DEREMER
	11
	12
	Notes for C Language Support
	13
	14
	Parser Error Handling
	15
	16
	17
	Parse Stack Overflow
	18
	Practical Hints
	19
	20
	21
	22
	23
	The DEREMER Algorithm
	Debugging a Parser: How It Works
	24
	25
	26
	27
	28
	Sample Output Files
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	Advanced Features
	39
	40
	41
	42
	43
	44
	45
	DEREMER Error Messages
	46
	References
	47

